
Optimum UPSTREAM Solutions

for Oil Water and Gas Production

The Progressing Cavity Pump System – the perfect solution when you face difficult media in the oilfield

Pump Equipment

- PC Pump
- Insertable Pump
- Torque Anchor
- Gas Separator
- Accessories

Drive Head Equipment

- Drive Head
- Three Phase Motor
- Control Panel
- Accessories

Rod String Equipment

- Sucker Rod
- Pony Rod and Polished Rod
- Non Rotating Centralizer
- Accessories

Well Head Equipment

- FBOP and SBOP
- Flow Tee
- Spool and Well Head Adapter

Further information

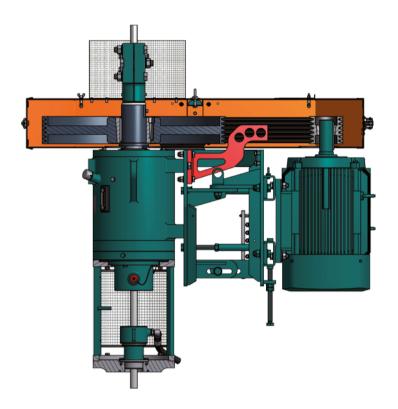
Product Catalogue Brochure NPS · 501

Application Range

CONVENTIONAL OIL PRODUCTION

HEAVY OIL PRODUCTION

DEWATERING OF GAS WELLS



NETZSCH Drive Heads

APPLICATIONS HAVE PROVED THEIR RELIABILITY OVER DECADES

General features

- Different polished rod velocities can be achieved by changing the pulleys or by using a variable speed drive
- All drive head types can be supplied for the polished rod sizes 1 1/4 and 1 1/2
- Axial load: 9 to 33 klb
- Sealing system: stuffing box, mechanical seal or lip seal system
- Flow tee connection: tlange API Spec. 6A type 6B/thread API 5B

NETZSCH Drive Heads – model ATEX – are approved in compliance with directive 94/9/EC for use in zone 1 (compared to name plate zone II 2G EEx c,k II T3 classification and the conformity declaration).

The drive head is designed for commercial plant and in corformity to the following regulations and norms:

- Conformity to the Machinery Directive 2006/42/EC
- Conformity to pertinent provisions of ATEX Directive 94/9/EC
- Conformity to pertinent provisions of directives:
 - DIN EN 13463-1

 - DIN EN 13463-5
 - DIN EN 13463-8 DIN EN ISO 12100
 - DIN EN 1127-1
 - ISO 15136-2

Drive Head Accessories

Very often small accessories can be decisive for the safety of the service people and for the lifetime of the equipment. Based on the service experience for more than 20 years of PCP downhole pump installations and start ups NETZSCH offers a wide range of special tools.

Benefits and special features

- Operation in explosive atmospheres (CE II 2G EEX c, k IIB T3)
- Integrated overload protection
- Integrated hydraulic brake
- Integrated safety clamp
- Exchangeable sealing box
- Exchangeable flange connections

Spare part sets

on special request

Vertical Drive Head GH

Integrated Gear Box GH – Hollow Shaft

Features

- Used especially for high load (motor power)
- Integrated reduction allows a rotation reduction ratio of 1:4.

Specifications

- Power: 20 to 100 hp
- Speed range: 60 to 400 rpm
- Maximum torque: 3400 Nm
- Brake system: hydraulic Motor
- Transmission: gear box, pulleys and belts

Right Angle Drive Head RH

Angle Drive with Gearbox RH – Hollow Shaft

Features

- Used especially for very low polished rod speed
- The drive head has an integrated gear reduction
- The geometry of the angle drive head allows the alternative use of a combustion motor or hydraulic motor.

Specifications

- Power: 20 to 60 hp
- Speed range: 60 to 400 rpm
- Maximum torque: 2500 Nm
- Brake system: hydraulic, hydraulic motor or mechanical
- Transmission: gear box, pulleys and belts

Vertical Drive Head DH

Direct Drive DH – Hollow Shaft

Features

- Used for applications with higher rotations
- Economical and reliable

Specifications

- Power: 20 to 75 hp
- Speed range: 100 to 500 rpm
- Maximum torque: 2000 Nm
- Brake system: hydraulic or hydraulic motor
- Transmission: pulleys and belts

PCP Pump Types

MAKE THE RIGHT CHOICE FOR THE RIGHT APPLICATION

NTZ Rubber-metal Progressing Cavity Pumps

Efficient handling of fluid

- High viscosity oil more than
 50.000 cP at the well head
- High sand content up to 40% at the suction side
- High gas content app. 40% free gas at the suction side
- Water cut up to 100%
- Density up to 0.82 kg/dm³ (45° API)
- Temperature up to max. 160°C
- Pressure up to 300 bar
- Production up to 300 m³/day (1900 bpd)

Advantages

- Low life cycle cost
- Easy installation and transport
- Less number of wear parts

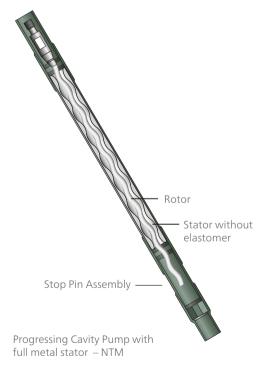
	Various types							
Pump Type	nominal production rate [m³/d]	nominal production rate [bpd]	max. differential pressure [bar]	minimum tubing size	minimum casing size			
NTZ 166*	0,5 to 4,5	3 to 30	240	1,66"	3 1/2"			
NTZ 238*	1,3 to 15	8 to 80	240	2 3/8"	3 1/2"			
NTZ 278*	3 to 130	20 to 800	300	2 3/8"	4 1/2"			
NTZ 350*	13 to 140	80 to 880	300	2 7/8"	5 1/2"			
NTZ 400*	25 to 475	160 to 3000	240	2 7/8"	5 1/2"			
NTZ 450*	60 to 390	375 to 2450	240	3 1/2"	6 5/8"			
NTZ 500*	110 to 475	695 to 3000	200	4 1/2"	6 5/8"			

NTZ Metal-metal Progressing Cavity Pumps

- Maximum flexibility in the perspective of viscosity and temperature
- No elastomer: no risk caused by chemically aggressive fluids
- Perfectly suited for thermal treatment of the wells

NTU Even wall Progressing Cavity Pumps

Produced with steel tube corresponding to the internal geometry of the stator (helical). Thus the elastomer has a uniform wall thickness featuring a lower operational and starting torque due to its lower swelling when exposed to temperature varying and chemically aggressive fluids.


Advantages

- Short pump length
- Lower starting and operational torque
- Longer run life under severe fluid conditions
- Less influence due to temperature and chemicals
- Easier to assemble in wells with deviations
- Lower hysteresis

Rotor

Stator

Better heat distribution

NTZ-DTM Geometry NTZ-STM Geometry

Stop Pin Assembly

Progressing Cavity Pumps with

Uniform Elastomer Wall – NTU

NTU-DT Geometry

NTU-ST Geometry

Special Pumps

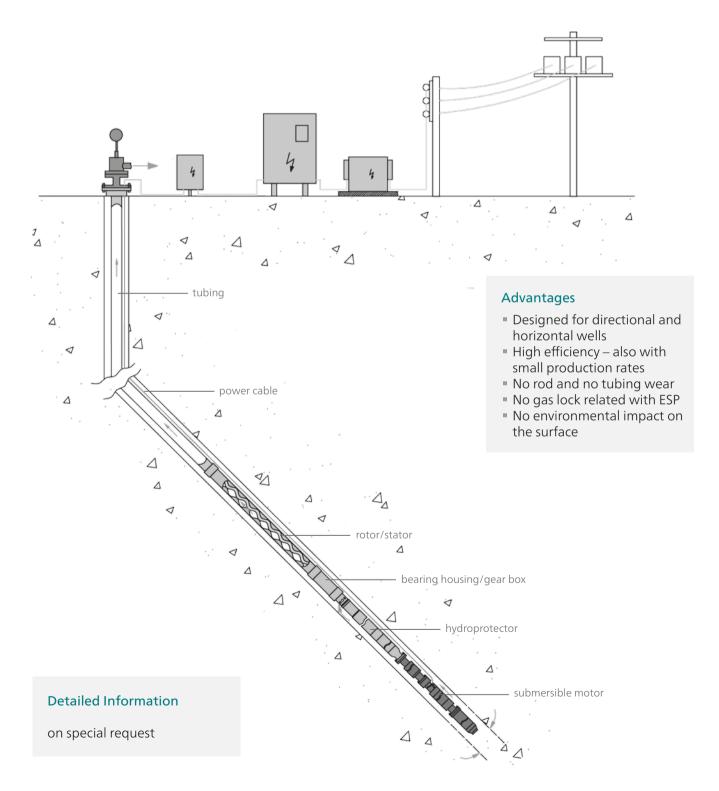
AND SPECIAL PUMP SYSTEMS

NSPCP® – NETZSCH Submersible Progessing Cavity Pump

Applications

The main feature of the Submersible Progressing Cavity Pumps (rotor & stator) is their assembly inside the tubing. Thus, the pump is not connected to the production line but assembled inside it.

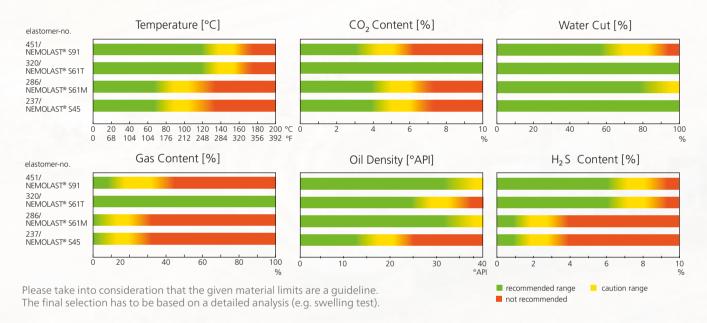
Therfor it is ideal for:


- Wells with low flow the cost of the intervention makes the use of a normal pump economically not suitable
- Wells with a high frequency of interventions (independent of the flow)
- Flow range 1,3 to 491 bpd at 100 rpm
- Pressure range 100 to 240 bar
- Pump with downhole sensors

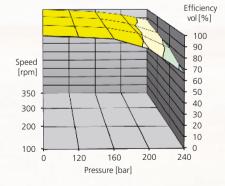
Advantages • Minimal time of intervention Tubing Minimal costs of rig Minimal rig's costs in Rod workover services Connection Minimal produktion losses Pump change without removing it from the tubing Pump change with flushby equipment Up to 60 % savings in pump Тор Packing replacement No removal of downhole sensors and cable **Anchoring Set** Insertable Seating Set Set Not Anchored Bottom Anchoring System Packing

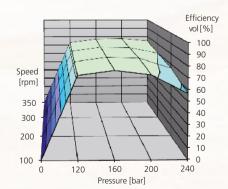
Detailed Information

Anchored


on special request

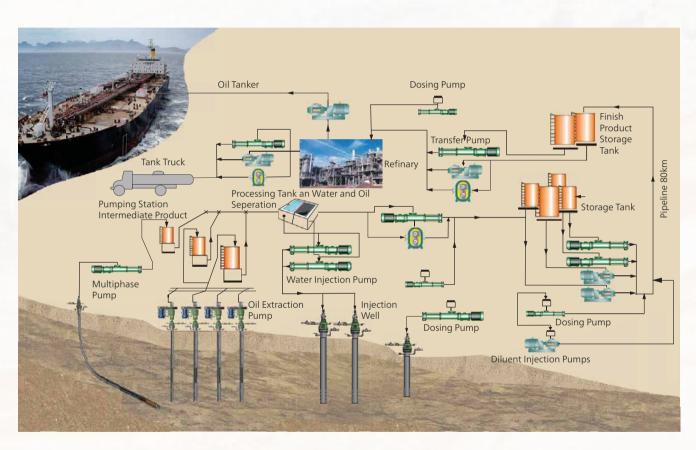
Technical Features


Material and Efficiency Information


Elastomer Overview

Efficiency of Oil Production

The general efficiency is normally between 40 % and 70 %, compared to a 30 % efficiency for plunger pumping units and 35 % for electrical submerged centrifugal pumps. The range of volumetric efficiency of NETZSCH downhole PC pump systems is 75 % – 95 %.



Application Process Flow Chart in Oil Field

From Upstream through Midstream and Dowstream Application, the wide product range of NETZSCH Pumps and Systems for the Oil & Gas Industry provides the optimum solution for you.

Optimum NETZSCH Products

For mid-/downstream applications

The highest standards for equipment and safety are a basic requirement for oil field work to ensure that processes remain safe and reliable. NEMO®, TORNADO® and NOTOS pumps contribute to such safety and reliability. The complexity of pump media ranges from highly viscous to low-viscous, from shear-sensitive to heavily laden with solid matter. The sophisticated and reliable design meets the particular pump job requirements and contributes to efficient process control. These pumps meet the requirements of API 676 3rd edition and also NACE MR-0-175.

NEMO® Progressing Cavity Pumps

Standard pumps
Hopper pumps
Immersible pumps
High pressure pumps
(injection pumps)
L.Cap® High perfomance pumps
Custom built pumps

TORNADO® Rotary Lobe Pumps

Standard pumps Custom built pumps

NOTOS Multiple Screw Pumps

2 Screw Pump: 2 NS 3 Screw Pump: 3 NS 4 Screw Pump: 4 NS

NETZSCH Engineering

Testing and quality control Inspection and certification Special documentation

NETZSCH Accessories

Protection devices
Flushing/Sealing pressure
devices
Control systems
Trolley assemblies
Tools
Skids
Valves

Wide Range of Applications

NEMO® progressing cavity pumps are normally used for fluids having the following properties:

- Shear-sensitive
- Low to high viscosity
- With or without solids
- Dilatant or thixotropic
- Abrasive
- Adhesive

Quality and choice

We manufacture according to international standards and are certified according to DIN EN 9001: 2000. We weld in accordance with ASME IX and use materials such as Chromium-Nickel steels, Duplex and Super Duplex steels, Hastelloy, Titanium, as well as synthetic and ceramic materials. NBR, HNBR and Viton are employed as elastomers. Materials are coated with corresponding products.

- Shaft seals are available according to API 682 with installation space API 610.
- Stuffing-box packing, lip seals, single-acting mechanical seals with and without quenching, dual-acting mechanical seals (back-to-back or tandem) as well as shaft seal-free designs with magnetic coupling.
- Thermosyphon systems according to API designs.

Compact design with flanged drive; low investment, operating and maintenance costs Four rotor/stator geometries for optimised performance.

NEMO® SY bearing housing pump

Bare shaft pumps with double bearing in cast iron for high torques. Connection to the drive through flexible couplings, spacer couplings according to DIN or API.

Rotor

Wear and corrosion resistant design in all usual materials, as well as Duplex, Super Duplex, 254 SMO, Monel etc. (materials acc. to NACE available), hardened rotors to transfer medium with sand.

2 Stator

Vulcanised into a tube, with integrated seals on both ends in a variety of elastomers, plastics or metals. Stators with equal wall thickness for high temperature variations. We also supply special materials HSB, HNBR for products including $\rm H_2S$ and high temperature.

3 Drive Chain

Drive shaft and connecting shaft with coupling rod and two universal joints for power transmission from the drive to the rotor in all usual materials, as well as Duplex, Super Duplex, 254 SMO, Monel etc. (materials according to NACE possible). For high volume and high pressure applications double seal pivot joints are available. It features high intensity, long-life and steady transmission.

Shaft Seal

Standard design with single acting, wear resistant mechanical seal independent of the direction of rotation; on request different types of single/double acting mechanical seals by various manufacturers, cartridge and special seals with circulation systems.

Suction and Pressure Housing

Flanges acc. to DIN, ANSI, JIS etc. or threads. Materials as cast iron, cast iron internal rubber-lined, Halar® coated, AISI 316 L or Ti, Duplex, Super Duplex, 254 SMO, Monel etc, (materials according to NACE available).

NETZSCH Multiphase Pumps

SUBSTITUTE THE EXPENSIVE ON-SITE SEPARATION

NETZSCH Multiphase Pump

Large Range of Capacities and Pressures

- Flow rate from a few m³/h up to 600 m³/h (91,000 bpd)
- Pressure up to 60 bar
- NEMO L. Cap® high performance pumps in single and twin design cover flow rates up to 1000 m³/h (151,000 bpd)

Applications

- Pumping of oil, gas or water mixtures with solids
- Pumping from the well to the manifolds or gathering stations

NM105SY

Capacity: 44-94 m³/h Pressure: 18 bar

Medium: multiphase water, gas, crude oil, H₂S

Gas rate: 8

VM090SY

Capacity: 11,5-50-55 m³/h Pressure: 23-30-35 bar Medium: oil, water, gas

Gas rate: 35%

VM053SY

Capacity: 2-12 m³/h Pressure: 28-40 bar

Medium: oil, water, gas 20-30%

Gas rate: 32%

Advantages

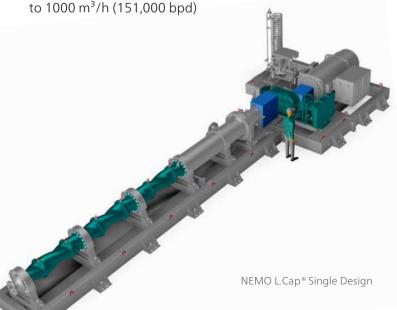
- High content of sand and/or gas
- Low operating and maintenance cost
- Very low emulsifying effect on oil/ water mixtures
- Efficient transport of oil/water mixtures with a very high content of sand and/or gas
- Efficient transport of highly viscous products
- Almost pulsation-free pumping
- Installation in any position
- Near to no shear rate

Further information

NETZSCH Multiphase Pumps Brochure NPS · 409

NETZSCH Transfer Pump

IDEAL FOR LOW PRESSURE APPLICATIONS


Transfer with NEMO® Progressing Cavity Pumps

Large Range of Capacities and Pressures

- Flow rate from a few m³/h up to 1000 m³/h (91,000 bpd)
- Pressure up to 36 bar
- The NEMO L. Cap® high performance pumps in single or twin design cover flow rates up to 1000 m³/h (151,000 bpd)

Advantages

- Low operational cost
- Efficient handling of viscous medium
- Transfer with high metering, repeated precision up to ±1 %
- Low emulsion of oil/water mixtures

Applications

- Transfer of viscous polymers from storage-tank to polymer stations
- Transfer of dilute polymer to well
- Transfer of crude oil from well to gathering station
- Pumping of exhausted polymers
- Transfer of sewage and mud
- Pumping of drilling sludge
- Pumping of slurries
- Pumping of cuttings
- Unloading of tank-trucks (special version for low ambient
- temperatures)

 Tank cleaning

Transfer with TORNADO® Rotary Lobe Pumps

The TORNADO® rotary lobe pumps are self priming, valveless and offer high performance. They are designed for intermittent or continuous operation and provide gentle pumping of the media are ideally suited to transfer, process and dosing applications. They are selected and configured for the individual requirements of each application.

TORNADO® T1

Large Range of Capacities and Pressures

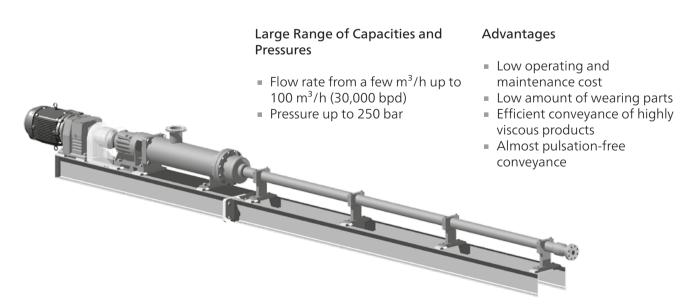
- Flow rate from a few m³/h up to 1,000 m³/h (151,000 bpd)
- Pressure up to 6 bar

TORNADO® T2

Advantages

- Variable, modular system
- Robust and space saving design
- Three lobe geometries
- Highly abrasion resistant protection plates or housing liners
- Adjustable housing for long service life
- Standard mechanical seal, fitted for any DIN 24960 seal (optional)
- The patented timing gear on the T1, its separate seals for pump and drive housing prevent ingress of any product leakage
- Bearing shafts on the rotary lobes with polygonal plug-in connection simplify maintenance of the T1
- T2 with Full-Service-In-Place Design

Further information


TORNADO® T.Proc® Oil & Gas Brochure NPS · 088

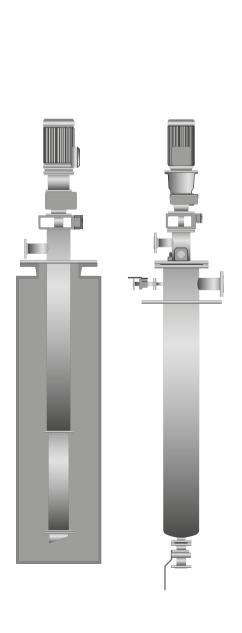
NETZSCH Injection Pumps, NETZSCH Sump and Caisson Pumps

FOR HIGH PRESSURE APPLICATIONS AND HIGH VISCOUS PRODUCTS

NETZSCH Injection Pump

NETZSCH Sump and Caisson Pump

Large Range of Capacities and Pressures


- Flow rate from a few m³/h up to 300 m³/h (45,000 bpd)
- Pressure up to 24 bar
- Immersible depth up to 12 m
- NEMO L.Cap® in vertical design covers flow rates up to 300 m³/h

Applications

- Handling of reclaimed oil
- Oil-seawater
- Mud-seawater
- Emptying of crude oil wagon
- Emptying tanks
- Pumping of hydrocarbon condensate

Advantages

- Compact equipment
- High efficiency
- Transfer of viscous medium with solids
- No dry-running
- Convenient installation

NETZSCH Gas Compressor

PCP GAS COMPRESSORS INCREASE THE WELL'S PRODUCTIVITY

Goals

Reducing backpressure on casing

Consequences

- Increases well's productivity
- Increases pump's efficiency, as less gas passes through the pump;
- Creation of self sufficient field: using natural resources to create energy and avoid gas being released into atmosphere

Advantages

- Managing low and medium volume of gas
- Cheaper than standard compressors
- Managing wet gas and condensates (purge system for condensates)
- Differential pressure up to 7 bar

NOTOS® Multi Screw Pumps

Since 1979 NETZSCH has been manufacturing Multiple Screw Pumps. The most advanced technology is utilized to reach the high precision needed to produce these pumps. Reliability, durability and experience are some reasons why you should choose NETZSCH.

NOTOS® multiple screw pumps are typically used for transfer in the petrochemical industry and refineries for various media:

- Crude Oil
- Lube Oil
- Diesel
- Palm Oil
- Fuel Oil, HFO, LFO
- Asphalt
- Bitumen
- Produced water, oily water
- Vacuum residue

Advantages

- High efficiency
- Hydraulically balanced
- Low noise emission
- Long service life
- Low pulsation
- Synchronized spindles
- Complies with API 676 3rd Ed.

2 NS Series

- Flow rate up to 500 m/h³ (2200 gpm)
- Pressure up to 16 bar (230 psi)
- Temperature up to 300°C (570°F)
- Viscosity up to 10.000 cSt

3 NS Series

- Flow rate up to 200 m/h³ (660 gpm)
- Pressure up to 80 bar (1160 psi)
- Temperature up to 300°C (570°F)
- Viscosity up to 12.000 cSt

4 NS Serie

- Flow rate up to 1000 m/h³ (4500 gpm)
- Pressure up to 80 bar (1160 psi)
- Temperature up to 300°C (570°F)
- Viscosity up to 50.000 cSt

NOTOS® Multi Screw Pumps

IN OPERATION

Crude oil production and processing

Operating Conditions:

- Pump type: NOTOS® 2 NS
- Fluid: Crude Oil
- Flow rate: 250 m³/h
- Discharge Pressure: 8 bar
- Viscosity: 100 1000 CST
- Operating Temperature:
 10 ~ 50 °C

Offshore

Operating Conditions:

- Pump type: NOTOS® 3 NSFluid: ISO VG 46
- Flow rate: 3 m³/h
- Discharge Pressure: 30 bar

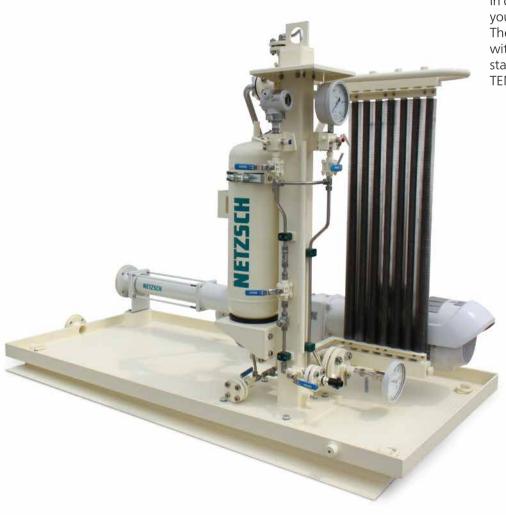
Cargo Pumps

Operating Conditions:

- Pump type: NOTOS® 4 NSFluid: Fuel Oil 1 A
- Flow rate: 130 m³/h
- Discharge Pressure:15,1 Kgf/cm²
- Viscosity: 605 CST
- Temperature: 20 to 60 °C
 Density: 1024 Kg/cm³

Accessories and Systems

NETZSCH Seal Support Systems to enhance safety and increase the lifespan of your equipment


Goal

According to API682 4th edition the pump supplier is responsible for the complete unit including the sealing system.

With the design of the NETZSCH system we achieve the integration between seal and the respective support systems. As a result your process will become more efficient and more economical.

Benefits

The seal support system creates and maintains an optimal fluid environment at the mechanical seal. This provides an important contribution to better and safer plant operation without compromise. Safety is our key requirement. Investing in the seal support system will lead to significant cost savings in the long term: Total cost reduction will arise from immediate savings on installation, savings on maintenance budgets, a decrease in downtime and an extension of your meantime between failure. The seal support system complies with the latest international standards such as API, ASME and TEMA amongst others.

Accessories and Service for Upstream applications

Pump System Accessories

- Control line
- Production line

Pump Accessories

- Pump joints
- Couplings

Drive Head Accessories

- Power belts/V-belts
- Packings
- Ring joints

Rod Accessories

- Polished Rod Couplings
- Couplings/Cross Couplings

Complete Well Production Simulation and Optimisation

Complete Monitoring System

Accessories and Service for Mid-/Downstream applications

Safety Valves and Bypass System

Safety valves and a bypass system installed between the inlet and outlet can protect the system. When the actual pressure exceeds the set pressure, the safety valve is opened and the medium flews by passes the pump housing.

Diaphragm Pressure Gauge and Over Pressure Protection

- Gauge isolated from the media by a generously dimensioned diaphragm
- Stainless steel diaphragm
- Display of operation pressure
- For highly clogging fluids
- Shutdown at the pre-selected pump's maximum discharge pressure
- Pressure range of 0 ~10 / 0 ~16/ 0 ~25 / 0 ~ 40 bar

Control Panel

- Frequency inverter
- Complete instrumentation
- Flow-meter

After Sales

- Commissioning on request
- Start-up on request
- Maintenance at site
- Training at site and in-house

Heating Jacket Pump House and Dry Running Protection

When the temperature of the medium in the pump exceeds the set value or no medium passes through, the NEMO® pumps equipped with STP-2A dry running protective system will stop operation automatically. For special applications, such as the pumps installed in cold regions, we provide pumps with a heat preservation jacket. By flushing the jacket with hot water the whole pump will be heated, hence the required temperature, viscosity, and fluidness of the medium will be ensured.

Questionnaire for Oil & Gas Upstream

Contact

company	у	address	
name		phone	
telefax	4	e-mail	

Well Completion Data

well n	0.			field nam	e					
vertical depth*		m] [ft]	perforation d	lepth	from	■ [m	n] = [ft]	to	■ [m] ■ [ft]	
well inforn	nation	vertical	deviated	d¹ ■ horizoi	ntal¹	exist	ing	newly	drilled	planned
well head info	ormation	■ 3 1/8" x 20	000 psi	3 1/8" x 3000) psi	other	3			
electrical p	ower		[Volts]		[Hz]	ambier	nt temp	erature		■ [°C] ■ [°F]
casing ²			tubing ²			S	ucker ro	d		
size	■ [ir	ich] = [mm]	size		■ [i	nch]	[mm]	size		[inch] [mm]
inside dia	■ [ir	ich] = [mm]	inside dia		■ [i	nch]	[mm]	materia	al g	rade D
weight		[lbs]	weight	[lbs] th	nread	■ EU	NU			rade K pecial
	well nowell nowell head informell head informelectrical parties of the size inside dia	well no. vertical depth* well information well head information electrical power casing² size	vertical depth* well information vertical well head information electrical power casing² size [inch] [mm] inside dia	well no. vertical depth* well information vertical vertical deviate vertical inside dia vertical vertical vertical vertical inside vertical vertical inside vertical vert	well no. vertical depth* well information vertical vertical vertical vertical deviated¹ horizo well head information 3 1/8" x 2000 psi electrical power [Volts] casing² tubing² size [inch] [mm] size inside dia [inch] [mm] inside dia	well no. field name vertical depth* [m] [ft] perforation depth well information vertical deviated¹ horizontal¹ well head information 3 1/8" x 2000 psi 3 1/8" x 3000 psi electrical power [Volts] [Hz] casing² tubing² size [inch] [mm] size inside dia [inch] [mm] inside dia	well no. field name vertical depth* [m] [ft] perforation depth from well information vertical deviated¹ horizontal¹ exist well head information 3 1/8" x 2000 psi 3 1/8" x 3000 psi other electrical power [Volts] [Hz] ambier casing² tubing² size [inch] [mm] size inside dia [inch] [inch] [inch]	well no. field name vertical depth* [m] = [ft] perforation depth from [m] well information vertical deviated¹ horizontal¹ existing well head information 3 1/8" x 2000 psi 3 1/8" x 3000 psi other³ electrical power [Volts] [Hz] ambient temp casing² tubing² size [inch] [mm] inside dia [inch] [mm]	well no. field name vertical depth* [m] [ft] perforation depth from [m] [ft] well information vertical deviated¹ horizontal¹ existing newly well head information 3 1/8" x 2000 psi 3 1/8" x 3000 psi other³ electrical power [Volts] [Hz] ambient temperature casing² tubing² size [inch] [mm] size inside dia [inch] [mm] materia	well no. field name vertical depth* [m] [ft] perforation depth from [m] [ft] to well information vertical deviated¹ horizontal¹ existing newly drilled well head information 3 1/8" x 2000 psi 3 1/8" x 3000 psi other³ electrical power [Volts] [Hz] ambient temperature casing² tubing² size [inch] [mm] size inside dia [inch] [mm] material

Production Data

current lift m	ethod						
production	rate	current	■ [bpd] ■ [m³/d]	planned	■ [bpd] ■ [m³/d]	water cut	[%]
pump setting	depth*	current	■ [m] ■ [ft]	planned	■ [m] ■ [ft]	sand cut	[%]
dynamic fluid	l level*	current	■ [m] ■ [ft]	planned	■ [m] ■ [ft]	static fluid level*	■ [m] ■ [ft]
static BHP (at	perf.)		■ [bar] ■ [psi]	productivity index		■ [b/d/psi] ■ [m³/d/psi]	
dynamic BHP (a	at perf.)	■ [bar] ■ [psi]		casing pressure		■ [bar] ■ [psi]	
GOR		■ [m³/m³] ■ [cuft/bbl]		flow line pressure		■ [bar] ■ [psi]	

Fluid Data

chemical treatment	■ yes ■ no	bubble point pressure	■ [bar] ■ [psi]
paraffin production	■ yes ■ no	CO ₂ content	■ [%] ■ [ppm]
oil viscosity at surface	[cP]	H₂S content	■ [%] ■ [ppm]
oil viscosity at pump	[cP]	aromatics ⁴	[%]
chloride content	[%]	specific oil density⁴	■ [bar] ■ [psi]
temperature at surface	■ [°C] ■ [°F]	temperature at pump	■ [°C] ■ [°F]

Attachments and Comments

■ ¹well bore geometry ■ ²completion details	³wellhead drawing	4fluid analysis	other	*from surface
---	-------------------	-----------------	-------	---------------

Questionnaire for Oil & Gas Mid-/Downstream

Contact

company	country	
department	phone	
name of the oilfield	fax	
name	e-mail	
address	project name	
	project number	

Fluid Data

Please send	l a quotation for	units
	•	

medium		water cut	[%]
fluid temperature	■ [°C] ■ [°F]	solid content	[%]
oil gravity	■ [°API] ■ [g/cm³] ■ [kg/m³]	H₂S content	■ [%] ■ [ppm]
viscosity	■ [cP] ■ [CST] ■ [mPas]	chloride content	■ [%] ■ [ppm]
GOR		CO ₂ content	■ [%] ■ [ppm]
bubble point pressure	■ [bar] ■ [psi]	particle size	■ [mm] ■ [inch]

System Data

production rate		discharge pressure	■ [bar] ■ [psi]
suction pressure	■ [bar] ■ [psi]	ambient temperature	■ [°C] ■ [°F]

Electric Data or Pneumativ or Gas Data or Hydraulic Data operating voltage V air or gas pressure □ [bar] □ [psi] oil pressure cycles Hz air or gas consumption □ [m³/min] oil consumption protection gas structure

Options

pump bare shaft	base plate or moving device	coupling	□ shut off valves □ relief valves		
control panel	Protection	Requirements	■ API 676	■ API 682	
VSD	■ mechanical ■ electrical ■ fre				

Shipping Data

EXW	ex works (defined location)	FOB	free on board (defined port or shipment)	CIF	cost insurance fright (defined port or destination)
FCA	free carrier (defined location)	CFR	cost and freight (defined port or destination)	FIP	cost insurance paid (defined port or destination)

Signature and date

Comments